Longevity risk: past, present and future

Xiaoming Liu

Department of Statistical & Actuarial Sciences Western University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Longevity risk: past, present and future

Xiaoming Liu

Department of Statistical & Actuarial Sciences Western University (former University of Western Ontario)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Longevity risk: past, present and future

Xiaoming Liu

Department of Statistical & Actuarial Sciences Western University (former University of Western Ontario) London, Ontario, Canada

July 19-21, 2012, Qingdao

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

London, Ontario, Canada

Western U., London, Ontario, Canada

Outline

Past: The Meaning of Longevity Risk

Present: Stochastic Mortality Modelling

Time Series Models Affine-Type Diffusion Models Subordinated Markov Mortality Model

Future: Risk Management of Longevity Risk

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Historical Sweden Male Mortality Data

Mortality Changes at Different Ages

Actuarial Perspective on Mortality Study

- Actuaries play a special role in ensuring adequate funds available to make the payments for insured products and social security systems.
- Actuarial calculation normally requires very long-term mortality prediction, say 60 years and above.
- Prospects of longer life are viewed as a positive change for individuals and as a substantial social achievement but unforeseen development could lead to unexpected spending and result in insolvency.
- The main challenge is not the longevity but instead the uncertainty contained in future mortality change.
- Stochastic mortality model is needed for prediction and pricing of mortality/longevity related products.

Model Selection Criteria

- Tractability: simple, transparent, easy to understand, tractable, etc.
- Meaningfulness: positive, biologically meaningful, consistent with historical data, etc.
- Applicability:
 - Parameter estimates should be robust relative to the period of data and range of ages employed.
 - Forecast levels of uncertainty and central trajectories should be plausible and consistent with historical trends and variability in mortality data.
 - It should be possible to use the model to generate sample paths and calculate prediction intervals.
 - At least for some countries, the model should incorporate a stochastic cohort effect.
 - The model should have a non-trivial correlation structure over age and time.

Stochastic Mortality Models

Different type of stochastic mortality models have been proposed since 1992.

- Time series models
 - The Lee-Carter model (Lee and Carter, 1992)
 - The Cairns-Blake-Dowd model (Cairns, Blake and Dowd, 2006)
- Affine-type diffusion models
 - Dahl, M. (2004), Biffis (2005), etc
 - Luciano and Vigna (2006), Non-mean reverting process
 - More: Milevsky and Promislow (2001), Ballotta and Haberman (2006), Liu, Mamon and Gao (2011)
- Markovian mortality models
 - The phase-type mortality model (Lin and Liu, 2007)
 - The subordinated Markov mortality model (Liu and Lin, 2012)

The Lee-Carter (LC) Model

• Let m_{xt} be the central mortality rate at age x in year t.

The Lee-Carter model (1992)

$$\log m_{xt} = a_x + b_x k_t + \epsilon_{xt},$$

$$k_t = k_{t-1} + c + \xi_t, \quad \text{with i.i.d } \xi_t \sim N(0, \sigma^2).$$

Parameters interpretation

- a_x is the general age shape of the $log(m_{xt})$
- b_x indicates the age response to the impact of k_t
- k_t is a hidden stochastic process capturing the fluctuations in mortality random change
- Parameter estimation methods:
 - SVD method applied to $log(m_{xt})$, Lee and Carter (1992)
 - MLE method applied to (D_{xt}, ETR_{xt}), Brouhns, Denuit and Vermunt (2002)

Applying the LC Model to Sweden Male Mortality Data

Applying the LC Model to Sweden Male Mortality Data

Applying the LC Model to Sweden Male Mortality Data

The Fitted Lee-Carter Parameters Using MLE method

LC Prediction

- Now we have obtained a_x, b_x and the model for k_t using the data from year 0 to t₀.
- a_x and b_x will be treated as constants.
- The value of k_t at time t₀ + n, given the data available up to t₀, is predicted as follows:

$$\hat{k}_{t_0+n} = k_{t_0} + n \cdot \hat{c} + \sum_{j=1}^n \xi_j$$

The future mortality rates and other variables, such as the life expectancy at birth e₀(t), can all be calculated.

$$m_{xt} = \exp(a_x + b_x \hat{k}_t)$$

$${}_n p_x = \prod_{j=0}^{n-1} p_{x+j} = \prod_{j=0}^{n-1} \exp(-m_{x+j,j})$$

$$S(x, s, t) = \frac{t p_x}{s p_x} \quad \text{for } s < t.$$

Survivor fan chart for 65-year old males in 2003 from cbdmodel.com

Advantages and Disadvantages of the LC model

- Simple, transparent, easy to use
- Fit to the historical data well
- Can be used for pricing and reserving calculation
- ► No explicit formula, simulation needed.
- Objective extrapolation, no need for expert opinion.

Affine-Type Diffusion Models—One Example

Our model is built on the filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}, Q)$, where Q is a risk-neutral measure and \mathcal{F}_t is the joint filtration generated by r_t and μ_t .

• The short rate process r_t follows a Vasicek model

$$dr_t = a(b - r_t)dt + \sigma dW_t^1,$$

where a, b and σ are positive constants and W_t^1 is a standard Brownian motion.

► The force of mortality µ_t follows a non-mean reverting process, justified in Luciano and Vigna (2006)

$$d\mu_t = c\mu_t dt + \xi dZ_t,$$

where c and ξ are positive constants and Z_t is a standard Brownian motion correlated with W_t^1 so that

$$dW_t^1 dZ_t = \rho dt.$$

In other words, $Z_t = \rho W_t^1 + \sqrt{1 - \rho^2} W_t^2$, where W_t^2 is a standard Brownian motion independent of $W_{t_{eff}}^1$.

No-Arbitrage Evaluation Approach

- We adopt the No-Arbitrage approach for the evaluation of life annuity contract and GAOs.
- ▶ For a life aged x at time 0, under the Q measure:

$$M(T, T+n) = \mathbf{E}^{Q} \left[e^{-\int_{T}^{T+n} r_{u} du} \cdot \mathbf{I}_{\{\tau \geq T+n\}} \middle| \mathcal{F}_{T} \right]$$

$$= \mathbf{I}_{\{\tau \geq T\}} \cdot \mathbf{E}^{Q} \left[e^{-\int_{T}^{T+n} r_{u} du} e^{-\int_{T}^{T+n} \mu_{v} dv} \middle| \mathcal{F}_{T} \right],$$

$$a_{x}(T) = \mathbf{I}_{\{\tau \geq T\}} \sum_{n=0}^{\infty} \mathbf{E}^{Q} \left[e^{-\int_{T}^{T+n} r_{u} du} e^{-\int_{T}^{T+n} \mu_{v} dv} \middle| \mathcal{F}_{T} \right],$$

$$c(t, T) = \mathbf{E}^{Q} \left[e^{-\int_{t}^{T} r_{u} du} \mathbf{I}_{\{\tau \geq T\}} (a_{x}(T) - \mathcal{K})^{+} \middle| \mathcal{F}_{t} \right]$$

$$= \mathbf{I}_{\{\tau \geq t\}} \mathbf{E}^{Q} \left[e^{-\int_{t}^{T} r_{u} du} e^{-\int_{t}^{T} \mu_{v} dv} (a_{x}(T) - K)^{+} \middle| \mathcal{F}_{t} \right].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

No-Arbitrage Evaluation Approach

- We adopt the No-Arbitrage approach for the evaluation of life annuity contract and GAOs.
- ▶ For a life aged x at time 0, under the Q measure:

$$\begin{split} \mathcal{M}(T,T+n) &= \mathbf{E}^{Q} \left[e^{-\int_{T}^{T+n} r_{u} du} \cdot \mathbf{I}_{\{\tau \geq T+n\}} \middle| \mathcal{F}_{T} \right] \\ &= \mathbf{I}_{\{\tau \geq T\}} \cdot \mathbf{E}^{Q} \left[e^{-\int_{T}^{T+n} r_{u} du} e^{-\int_{T}^{T+n} \mu_{v} dv} \middle| \mathcal{F}_{T} \right], \\ a_{x}(T) &= \mathbf{I}_{\{\tau \geq T\}} \sum_{n=0}^{\infty} \mathbf{E}^{Q} \left[e^{-\int_{T}^{T+n} r_{u} du} e^{-\int_{T}^{T+n} \mu_{v} dv} \middle| \mathcal{F}_{T} \right], \\ c(t,T) &= \mathbf{E}^{Q} \left[e^{-\int_{t}^{T} r_{u} du} \mathbf{I}_{\{\tau \geq T\}} (a_{x}(T) - K)^{+} \middle| \mathcal{F}_{t} \right] \\ &= \mathbf{I}_{\{\tau \geq t\}} \mathbf{E}^{Q} \left[e^{-\int_{t}^{T} r_{u} du} e^{-\int_{t}^{T} \mu_{v} dv} (a_{x}(T) - K)^{+} \middle| \mathcal{F}_{t} \right]. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Liu, Mamon and Gao (2011)

"A comonotonicity-based valuation method for annuity-linked contracts"

 Use the change of numéraire technique twice to simplify the expression.

$$M(T, T+n) = \mathbf{I}_{\{\tau \ge T\}} \cdot \mathbf{E}^{Q} \left[e^{-\int_{T}^{T+n} r_{u} du} e^{-\int_{T}^{T+n} \mu_{v} dv} \middle| \mathcal{F}_{T} \right],$$

$$M(T, T+n) = \mathbf{I}_{\{\tau \ge T\}} B(T, T+n) \mathbf{E}^{\widetilde{Q}} \left[e^{-\int_{T}^{T+n} \mu(v) dv} \middle| \mathcal{F}_{t} \right]$$

$$a_{X}(T) = \sum_{n=0}^{\infty} \beta(T, T+n) e^{-(A(T,T+n)r_{T}+\widetilde{G}(T,T+n)\mu_{T})}$$

$$c(t, T) = \mathbf{I}_{\{\tau \ge t\}} \mathbf{E}^{Q} \left[e^{-\int_{t}^{T} r_{u} du} e^{-\int_{t}^{T} \mu_{v} dv} (a_{X}(T) - K)^{+} \middle| \mathcal{F}_{t} \right]$$

$$= M(t, T) \underbrace{\mathbf{E}^{\widehat{Q}} \left[(a_{X}(T) - K)^{+} \middle| \mathcal{F}_{t} \right]}$$

To derive its comonotonic bounds ${\tt rest}$ ${\tt rest}$

Advantages and Disadvantages of Affine-type models

- Mathematical tractability
- Well-developed methodology available to be used
- Lack of biological or empirical data evidence to support the use of this type of models.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Subordinated Markov Mortality Model

 Lin, X. S. and Liu, X. (2007), Markov aging process and phase-type law of mortality, North American Actuarial Journal 11, 92 – 109.

- Markov Aging Process and Phase-type Mortality Model
 - reflects the historic mortality experience;
 - is tractable mathematically, utilizing matrix analytic techniques.
 - has biological interpretation.

Subordinated Markov Mortality Model (cont.)

- Use a subordinating stochastic process (time-change) to incorporate stochastic mortality such that the stochastic model
 - has desirable properties: longevity risk is reflected in the model and confidence bands of future mortality rates are of banana-shape;

remains mathematically tractable.

Subordinated Markov Mortality Model (cont.)

- Use a subordinating stochastic process (time-change) to incorporate stochastic mortality such that the stochastic model
 - has desirable properties: longevity risk is reflected in the model and confidence bands of future mortality rates are of banana-shape;
 - remains mathematically tractable.
- Add risk loading parameters to the model for the pricing of mortality linked securities so that
 - we can calibrate the model to market information;
 - the price of basic mortality-linked securities (caplets and floorlets) has a closed form.

Subordinated Markov Mortality Model (cont.)

- Use a subordinating stochastic process (time-change) to incorporate stochastic mortality such that the stochastic model
 - has desirable properties: longevity risk is reflected in the model and confidence bands of future mortality rates are of banana-shape;
 - remains mathematically tractable.
- Add risk loading parameters to the model for the pricing of mortality linked securities so that
 - we can calibrate the model to market information;
 - the price of basic mortality-linked securities (caplets and floorlets) has a closed form.
- Liu, X. and Lin, X.S. (2012), A Subordinated Markov Model for Stochastic Mortality, *European Actuarial Journal* 2(1): 105-127

The Baseline Model

- ► Assume the aging process of life (x) follows a finite-state continuous-time Markov process {J_t; t ≥ 0}.
- The state space of the Markov process is assumed to consist of a set of transient states E = {1, 2, ··· , n} that represent chronological health statuses before death and a single absorbing state Δ representing the death.

The Baseline Model

The intensity matrix for the transient states is thus given by

$$\mathbf{\Lambda} = \begin{pmatrix} -\lambda_1 & \lambda_1' & 0 & \cdots & 0 \\ 0 & -\lambda_2 & \lambda_2' & \cdots & 0 \\ 0 & 0 & -\lambda_3 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -\lambda_n \end{pmatrix},$$

where

$$\lambda_i = \lambda_i' + q_i.$$

 λ_i' > 0 denotes the aging rate from status i to status i + 1, q_i > 0 denotes the death rate of the life given that the life is at status i.

Estimated aging related parameters

 Table 1: Estimated aging related parameters for Swedish cohorts of year 1811, 1861, and 1911

	Parameters					
Year	$\overline{\lambda}$	b	a	$[i_1,i_2]$	q	p
1811	2.5657	3.1504e-03	1.9888e-03	[42, 99]	9.3157e-09	3
1861	2.4794	4.4825e-03	1.9033e-03	[42, 89]	2.6351e-13	5
1911	2.3707	9.0987e-04	2.8939e-03	[33, 70]	1.8872e-15	6

Fitted curves on Sweden cohort 1811 to 1911

The Baseline Model

Let T(x) denote the time till absorption (death) of the Markov process. T(x) has a phase-type distribution with phase-type representation (α, Λ) of order n.

• The survival function of T(x) is

$$S_0(t) = \alpha e^{\mathbf{\Lambda} t} \mathbf{e}, \ t > 0.$$

• The survival function of T(x+s) is

$$rac{S_0(t+s)}{S_0(s)} = lpha_s e^{\mathbf{\Lambda} t} \mathbf{e}, t>0,$$

where

$$\alpha_s = \frac{\alpha \, e^{\Lambda s}}{\alpha e^{\Lambda s} \mathbf{e}}.$$

The Baseline Model

Let T(x) denote the time till absorption (death) of the Markov process. T(x) has a phase-type distribution with phase-type representation (α, Λ) of order n.

• The survival function of T(x) is

$$S_0(t) = \alpha e^{\mathbf{\Lambda} t} \mathbf{e}, \ t > 0.$$

• The survival function of T(x+s) is

$$rac{S_0(t+s)}{S_0(s)} = lpha_s e^{\mathbf{\Lambda} t} \mathbf{e}, t>0,$$

where

$$\alpha_s = \frac{\alpha \, e^{\Lambda s}}{\alpha e^{\Lambda s} \mathbf{e}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Note: Survival distribution is a deterministic function.

Gamma Process and Subordinated Aging Process

- The gamma subordinating process:
 - γ₀ = 0;
 - it has independent increments, i.e., for any partition $0 \le t_0 < t_1 < \cdots < t_n$, the random variables
 - $\gamma_{t_1} \gamma_{t_0}, \cdots, \gamma_{t_n} \gamma_{t_{n-1}}$ are mutually independent; and
 - ► the increment \(\gamma_{t+s} \gamma_t\) has a gamma distribution with mean s and variance \(\nu s\), for any s, t ≥ 0.
- The aging process J_t is subordinated by the gamma process and the resulting aging process Z_t is now a subordinated Markov process

$$Z_t = J_{\gamma_t}.$$

Gamma Process and Subordinated Aging Process

- The gamma subordinating process:
 - γ₀ = 0;
 - it has independent increments, i.e., for any partition $0 \le t_0 < t_1 < \cdots < t_n$, the random variables
 - $\gamma_{t_1} \gamma_{t_0}, \cdots, \gamma_{t_n} \gamma_{t_{n-1}}$ are mutually independent; and
 - ► the increment \(\gamma_{t+s} \gamma_t\) has a gamma distribution with mean s and variance \(\nu s\), for any s, t ≥ 0.
- ► The aging process J_t is subordinated by the gamma process and the resulting aging process Z_t is now a subordinated Markov process

$$Z_t=J_{\gamma_t}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Interpretation: Allow aging process be altered by external factors randomly

Survival Index

With the model, we have

$$S(t) = S_0(\gamma_t) = \alpha e^{\mathbf{\Lambda} \gamma_t} \mathbf{e}, \quad t > 0.$$

- ► The new survival function S(t) is a stochastic process and is referred to as the survival index for the cohort under consideration.
- Thus the new mortality model is a stochastic mortality model.

Term Structure of Mortality

For 0 ≤ s ≤ t, let P(s, t) be the survival function of a life aged x at time 0 to be alive from time s to time t that is measured at time s. {P(s, t); 0 ≤ s ≤ t} is commonly referred to as the term structure of stochastic mortality.

$$P(s,t) = \frac{1}{S(s)} E[S(t)|\mathcal{F}_s],$$

where $\mathcal{F}_t, t \ge 0$, is the filtration generated by S(t). • We have shown

$$P(s,t) = \alpha_{\gamma_s} e^{\tilde{\Lambda}(t-s)} \mathbf{e}, \ 0 \le s \le t.$$

As a special case, the term structure at time 0 is given by

$$P(0,t) = \alpha e^{\tilde{\Lambda}t} \mathbf{e}, t \ge 0$$

Explicit Expression of Term Structure of Mortality

Suppose that the eigenvalues $-\lambda_1, \dots, -\lambda_n$ of the intensity matrix Λ are distinct. Let $\mathbf{h_1}, \dots, \mathbf{h_n}$ and ν_1, \dots, ν_n be their corresponding right and left eigenvectors such that $\nu_i \mathbf{h_i} = 1$. It is known that $\nu_i \mathbf{h_j} = 0, i \neq j, i, j = 1, \dots, n$. Then, P(s, t) has the phase-type representation $(\alpha_{\gamma_s}, \tilde{\Lambda})$, where

$$lpha_{\gamma_s} = rac{lpha \, e^{oldsymbol{\Lambda} \gamma_s}}{lpha e^{oldsymbol{\Lambda} \gamma_s} oldsymbol{e}},$$

and

$$\mathbf{ ilde{\Lambda}} = -\sum_{i=1}^n ilde{\lambda}_i \, \mathbf{h_i} \, oldsymbol{
u_i},$$

with $\tilde{\lambda}_i$ being given by

$$\tilde{\lambda_i} = \frac{1}{\nu} \ln(1 + \nu \lambda_i).$$

Variance of Survival Index

The variance of S(t) is given by

$$Var[S(t)] = (\alpha \otimes \alpha) \left[e^{\left(\widetilde{\Lambda \oplus \Lambda} \right) t} - e^{\left(\widetilde{\Lambda} \oplus \widetilde{\Lambda} \right) t} \right] (\mathbf{e} \otimes \mathbf{e}).$$

Matrix analytic methodology

• Denote
$$\mathbf{D} = diag(-\lambda_1, \cdots, -\lambda_n)$$
, then

$$\mathbf{D} \oplus \mathbf{D} = diag(\mathbf{D} - \lambda_1 \mathbf{I}, \mathbf{D} - \lambda_2 \mathbf{I}, \cdots, \mathbf{D} - \lambda_n \mathbf{I}),$$

the Kronecker sum of **D** to itself, is diagonal with diagonal entries $-\zeta_k$, $k = 1, \dots, n^2$, where $\zeta_{i+j} = \lambda_i + \lambda_j$, $i, j = 1, \dots, n$. • Denote $\widetilde{\mathbf{D} \oplus \mathbf{D}} = diag(-\tilde{\zeta}_1, \dots, -\tilde{\zeta}_{n^2})$ and $\widetilde{\mathbf{A} \oplus \mathbf{A}} = (\mathbf{H} \otimes \mathbf{H}) \left(\widetilde{\mathbf{D} \oplus \mathbf{D}}\right) (\mathbf{H} \otimes \mathbf{H})^{-1}$,

where $\mathbf{H} = (\mathbf{h}_1, \cdots, \mathbf{h}_n)$ and \otimes is the symbol for the Kronecker product.

Variance function $Var[S(t)], t \ge 0$, for $\nu = 0.5, 1$ and 2

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Term structure P(0, t) with one- σ confidence intervals, based on $\nu = 1$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Interpretation of Parameter ν

- ► The curve of the term structure P(0, t), t ≥ 0, exhibits a twisted upward shift as the value of ν increases.
- ► The variance function Var[S(t)], t ≥ 0, increases as v gets larger.
- As a result, parameter ν may be interpreted as the level of longevity risk or the longevity parameter.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Development of Stochastic Mortality Modelling

From 4 talks in IME2006 to 4 sessions in IME2012.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Future: Risk Management of Longevity Risk

Could be my next year's topic at CICIRM.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ