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Present: Stochastic Mortality Modelling
Time Series Models
Affine-Type Diffusion Models
Subordinated Markov Mortality Model

Future: Risk Management of Longevity Risk



Historical Sweden Male Mortality Data
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Mortality Changes at Different Ages
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Actuarial Perspective on Mortality Study

I Actuaries play a special role in ensuring adequate funds
available to make the payments for insured products and
social security systems.

I Actuarial calculation normally requires very long-term
mortality prediction, say 60 years and above.

I Prospects of longer life are viewed as a positive change for
individuals and as a substantial social achievement but
unforeseen development could lead to unexpected spending
and result in insolvency.

I The main challenge is not the longevity but instead the
uncertainty contained in future mortality change.

I Stochastic mortality model is needed for prediction and
pricing of mortality/longevity related products.



Model Selection Criteria

I Tractability: simple, transparent, easy to understand,
tractable, etc.

I Meaningfulness: positive, biologically meaningful, consistent
with historical data, etc.

I Applicability:
I Parameter estimates should be robust relative to the period of

data and range of ages employed.
I Forecast levels of uncertainty and central trajectories should be

plausible and consistent with historical trends and variability in
mortality data.

I It should be possible to use the model to generate sample
paths and calculate prediction intervals.

I At least for some countries, the model should incorporate a
stochastic cohort effect.

I The model should have a non-trivial correlation structure over
age and time.



Stochastic Mortality Models

Different type of stochastic mortality models have been proposed
since 1992.

I Time series models
I The Lee-Carter model (Lee and Carter, 1992)
I The Cairns-Blake-Dowd model (Cairns, Blake and Dowd, 2006)

I Affine-type diffusion models
I Dahl, M. (2004), Biffis (2005), etc
I Luciano and Vigna (2006), Non-mean reverting process
I More: Milevsky and Promislow (2001), Ballotta and Haberman

(2006), Liu, Mamon and Gao (2011)

I Markovian mortality models
I The phase-type mortality model (Lin and Liu, 2007)
I The subordinated Markov mortality model (Liu and Lin, 2012)



The Lee-Carter (LC) Model

I Let mxt be the central mortality rate at age x in year t.

I The Lee-Carter model (1992)

logmxt = ax + bx kt + εxt ,

kt = kt−1 + c + ξt , with i.i.d ξt ∼ N(0, σ2).

I Parameters interpretation
I ax is the general age shape of the log(mxt)
I bx indicates the age response to the impact of kt
I kt is a hidden stochastic process capturing the fluctuations in

mortality random change

I Parameter estimation methods:
I SVD method applied to log(mxt), Lee and Carter (1992)
I MLE method applied to (Dxt ,ETRxt), Brouhns, Denuit and

Vermunt (2002)



Applying the LC Model to Sweden Male Mortality Data
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Applying the LC Model to Sweden Male Mortality Data
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The Fitted Lee-Carter Parameters Using MLE method
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LC Prediction
I Now we have obtained ax , bx and the model for kt using the

data from year 0 to t0.
I ax and bx will be treated as constants.
I The value of kt at time t0 + n, given the data available up to

t0, is predicted as follows:

k̂t0+n = kt0 + n · ĉ +
n∑

j=1

ξj .

I The future mortality rates and other variables, such as the life
expectancy at birth e0(t), can all be calculated.

mxt = exp(ax + bx k̂t)

npx =
n−1∏
j=0

px+j =
n−1∏
j=0

exp(−mx+j ,j)

S(x , s, t) =
tpx

spx
for s < t.



Survivor fan chart for 65-year old males in 2003 
from cbdmodel.com



Advantages and Disadvantages of the LC model

I Simple, transparent, easy to use

I Fit to the historical data well

I Can be used for pricing and reserving calculation

I No explicit formula, simulation needed.

I Objective extrapolation, no need for expert opinion.



Affine-Type Diffusion Models—One Example
Our model is built on the filtered probability space
(Ω,F , {Ft},Q), where Q is a risk-neutral measure and Ft is the
joint filtration generated by rt and µt .

I The short rate process rt follows a Vasicek model

drt = a(b − rt)dt + σdW 1
t ,

where a, b and σ are positive constants and W 1
t is a standard

Brownian motion.
I The force of mortality µt follows a non-mean reverting

process, justified in Luciano and Vigna (2006)

dµt = cµtdt + ξdZt ,

where c and ξ are positive constants and Zt is a standard
Brownian motion correlated with W 1

t so that

dW 1
t dZt = ρdt.

In other words, Zt = ρW 1
t +

√
1− ρ2W 2

t , where W 2
t is a

standard Brownian motion independent of W 1
t .



No-Arbitrage Evaluation Approach

I We adopt the No-Arbitrage approach for the evaluation of life
annuity contract and GAOs.

I For a life aged x at time 0, under the Q measure:

M(T ,T + n) = EQ
[
e−

∫ T+n
T rudu · I{τ≥T+n}

∣∣∣FT

]
= I{τ≥T} · EQ

[
e−

∫ T+n
T rudue−

∫ T+n
T µvdv

∣∣∣FT

]
,

ax(T ) = I{τ≥T}

∞∑
n=0

EQ
[
e−

∫ T+n
T rudue−

∫ T+n
T µvdv

∣∣∣FT

]
,

c(t,T ) = EQ
[
e−

∫ T
t ruduI{τ≥T}(ax(T )− K )+

∣∣∣Ft

]
= I{τ≥t}E

Q
[
e−

∫ T
t rudue−

∫ T
t µvdv (ax(T )− K )+

∣∣∣Ft

]
.
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Liu, Mamon and Gao (2011)
“A comonotonicity-based valuation method for annuity-linked
contracts”

I Use the change of numéraire technique twice to simplify the
expression.

M(T ,T + n) = I{τ≥T} · EQ
[
e−

∫ T+n
T rudue−

∫ T+n
T µvdv

∣∣∣FT

]
,

M(T ,T + n) = I{τ≥T}B(T ,T + n)EQ̃
[
e−

∫ T+n
T µ(v)dv

∣∣∣Ft

]
ax(T ) =

∞∑
n=0

β(T ,T + n)e−(A(T ,T+n)rT+G̃(T ,T+n)µT )

c(t,T ) = I{τ≥t}E
Q
[
e−

∫ T
t rudue−

∫ T
t µvdv (ax(T )− K )+

∣∣∣Ft

]
= M(t,T ) EQ̂

[
(ax(T )− K )+

∣∣Ft

]︸ ︷︷ ︸
To derive its comonotonic bounds



Advantages and Disadvantages of Affine-type models

I Mathematical tractability

I Well-developed methodology available to be used

I Lack of biological or empirical data evidence to support the
use of this type of models.



Subordinated Markov Mortality Model

I Lin, X. S. and Liu, X. (2007), Markov aging process and
phase-type law of mortality, North American Actuarial Journal
11, 92− 109.

I Markov Aging Process and Phase-type Mortality Model
I reflects the historic mortality experience;
I is tractable mathematically, utilizing matrix analytic

techniques.
I has biological interpretation.



Subordinated Markov Mortality Model (cont.)

I Use a subordinating stochastic process (time-change) to
incorporate stochastic mortality such that the stochastic
model

I has desirable properties: longevity risk is reflected in the model
and confidence bands of future mortality rates are of
banana-shape;

I remains mathematically tractable.

I Add risk loading parameters to the model for the pricing of
mortality linked securities so that

I we can calibrate the model to market information;
I the price of basic mortality-linked securities (caplets and

floorlets) has a closed form.

I Liu, X. and Lin, X.S. (2012), A Subordinated Markov Model
for Stochastic Mortality, European Actuarial Journal 2(1):
105-127
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The Baseline Model

I Assume the aging process of life (x) follows a finite-state
continuous-time Markov process {Jt ; t ≥ 0}.

I The state space of the Markov process is assumed to consist
of a set of transient states E = {1, 2, · · · , n} that represent
chronological health statuses before death and a single
absorbing state ∆ representing the death.

Xiaoming
椭圆形

Xiaoming
椭圆形

Xiaoming
椭圆形

Xiaoming
线条

Xiaoming
线条

Xiaoming
线条

Xiaoming
文本框
1

Xiaoming
文本框
n

Xiaoming
文本框
2

Xiaoming
文本框
......

Xiaoming
线条

Xiaoming
线条

Xiaoming
线条

Xiaoming
线条

Xiaoming
线条

Xiaoming
线条

Xiaoming
文本框
transition rates

Xiaoming
文本框
absorbing rates



The Baseline Model

I The intensity matrix for the transient states is thus given by

Λ =


−λ1 λ1

′ 0 · · · 0
0 −λ2 λ2

′ · · · 0

0 0 −λ3
. . . 0

...
...

. . .
. . .

...
0 0 0 · · · −λn

 ,

where
λi = λi

′ + qi .

I λi
′ > 0 denotes the aging rate from status i to status i + 1,

qi > 0 denotes the death rate of the life given that the life is
at status i .



Estimated aging related parameters

Table 1: Estimated aging related parameters for Swedish co-
horts of year 1811, 1861, and 1911

Parameters

Year λ b a [i1, i2] q p

1811 2.5657 3.1504e-03 1.9888e-03 [42, 99] 9.3157e-09 3

1861 2.4794 4.4825e-03 1.9033e-03 [42, 89] 2.6351e-13 5

1911 2.3707 9.0987e-04 2.8939e-03 [33, 70] 1.8872e-15 6
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Fitted curves on Sweden cohort 1811 to 1911
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The Baseline Model

I Let T (x) denote the time till absorption (death) of the
Markov process. T (x) has a phase-type distribution with
phase-type representation (α,Λ) of order n.

I The survival function of T (x) is

S0(t) = α eΛte, t > 0.

I The survival function of T (x + s) is

S0(t + s)

S0(s)
= αse

Λte, t > 0,

where

αs =
α eΛs

αeΛse
.

I Note: Survival distribution is a deterministic function.
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Gamma Process and Subordinated Aging Process

I The gamma subordinating process:
I γ0 = 0;
I it has independent increments, i.e., for any partition

0 ≤ t0 < t1 < · · · < tn, the random variables
γt1 − γt0 , · · · , γtn − γtn−1 are mutually independent; and

I the increment γt+s − γt has a gamma distribution with mean s
and variance νs, for any s, t ≥ 0.

I The aging process Jt is subordinated by the gamma process
and the resulting aging process Zt is now a subordinated
Markov process

Zt = Jγt .

I Interpretation: Allow aging process be altered by external
factors randomly
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Survival Index

I With the model, we have

S(t) = S0(γt) = α eΛγt e, t > 0.

I The new survival function S(t) is a stochastic process and is
referred to as the survival index for the cohort under
consideration.

I Thus the new mortality model is a stochastic mortality model.



Term Structure of Mortality

I For 0 ≤ s ≤ t, let P(s, t) be the survival function of a life
aged x at time 0 to be alive from time s to time t that is
measured at time s. {P(s, t); 0 ≤ s ≤ t} is commonly referred
to as the term structure of stochastic mortality.

I

P(s, t) =
1

S(s)
E [S(t)| Fs ] ,

where Ft , t ≥ 0, is the filtration generated by S(t).

I We have shown

P(s, t) = αγs e
Λ̃(t−s)e, 0 ≤ s ≤ t.

As a special case, the term structure at time 0 is given by

P(0, t) = α eΛ̃te, t ≥ 0.



Explicit Expression of Term Structure of Mortality

Suppose that the eigenvalues −λ1, · · · ,−λn of the intensity matrix
Λ are distinct. Let h1, · · · ,hn and ν1, · · · ,νn be their
corresponding right and left eigenvectors such that νihi = 1. It is
known that νihj = 0, i 6= j , i , j = 1, . . . , n. Then, P(s, t) has the
phase-type representation (αγs , Λ̃), where

αγs =
α eΛγs

αeΛγs e
,

and

Λ̃ = −
n∑

i=1

λ̃i hi νi,

with λ̃i being given by

λ̃i =
1

ν
ln(1 + νλi ).



Variance of Survival Index

The variance of S(t) is given by

Var [S(t)] = (α⊗α)

[
e

(
Λ̃⊕Λ

)
t − e(Λ̃⊕Λ̃) t

]
(e⊗ e) .



Matrix analytic methodology

I Denote D = diag(−λ1, · · · ,−λn), then

D⊕D = diag(D− λ1I,D− λ2I, · · · ,D− λnI),

the Kronecker sum of D to itself, is diagonal with diagonal
entries −ζk , k = 1, · · · , n2, where
ζi+j = λi + λj , i , j = 1, · · · , n.

I Denote D̃ ⊕ D = diag(−ζ̃1, · · · ,−ζ̃n2) and

Λ̃ ⊕ Λ = (H⊗H)
(

D̃ ⊕ D
)

(H⊗H)−1 ,

where H = (h1, · · · ,hn) and ⊗ is the symbol for the
Kronecker product.



Variance function Var [S(t)], t ≥ 0, for ν = 0.5, 1 and 2
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Term structure P(0, t) with one-σ confidence intervals,
based on ν = 1
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Interpretation of Parameter ν

I The curve of the term structure P(0, t), t ≥ 0, exhibits a
twisted upward shift as the value of ν increases.

I The variance function Var [S(t)], t ≥ 0, increases as ν gets
larger.

I As a result, parameter ν may be interpreted as the level of
longevity risk or the longevity parameter.



Development of Stochastic Mortality Modelling

From 4 talks in IME2006 to 4 sessions in IME2012.



Future: Risk Management of Longevity Risk

Could be my next year’s topic at CICIRM.
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